Survival strategies of host, parasite, and vector in human Malaria
Researcher Bulletin of Medical Sciences,
Vol. 27 No. 1 (2022),
20 November 2022
,
Page e16
Abstract
Malaria, the best example of infectious protozoan diseases, has been tremendously impacted the human genome. The global spread of malaria reflects the successful adaptations of Plasmodium in human host and its Anopheles vector. The potential defences of Plasmodium deal with diverse mechanisms of host immunity and persist in human with headstrong success. In an evolutionary arms race, human has developed malaria protective polymorphisms to survive. These polymorphisms provide safeguards human against the malaria. Anopheles has developed pesticide resistance for their survival. This article briefs the interactions among Plasmodium, Anopheles, and human to provide evolutionary insight on malaria related genetic polymorphisms and to determine the evolutionary fitness of human, Plasmodium and Anopheles.
- Genetic polymorphisms; Drug resistance; Insecticide resistance; Human malaria
How to Cite
References
PubMed: 8524388
Luty, A. J., Kun, J. F., & Kremsner, P. G. (1998). Mannose-binding lectin plasma levels and gene polymorphisms in Plasmodium falciparum Malaria. Journal of Infectious Diseases, 178(4), 1221–1224. doi:10.1086/515690, PubMed: 9806066
Malaguarnera, L., Simporè, J., Prodi, D. A., Angius, A., Sassu, A., Persico, I., . . . Musumeci, S. (2003). A 24-bp Duplication in exon 10 of Human chitotriosidase Gene from the Sub-Saharan to the Mediterranean Area: Role of Parasitic Diseases and Environmental Conditions. Genes and Immunity, 4(8), 570–574. doi:10.1038/sj.gene.6364025, PubMed: 14647197
Ravenhall, M., Campino, S., Sepúlveda, N. et al. (2018). Novel genetic polymorphisms associated with severe malaria and under selective pressure in North-Eastern Tanzania. PLOS Genetics, 14(1), e1007172. doi:10.1371/journal.pgen.1007172. [PMC Free article]. PubMed: [CrossRef]. Google Scholar.
Jongwutiwes, S., Putaporntip, C., Iwasaki, T., Ferreira, M. U., Kanbara, H., & Hughes, A. L. (2005). Mitochondrial genome sequences support ancient population expansion in Plasmodium vivax. Molecular Biology and Evolution, 22(8), 1733–1739. doi:10.1093/molbev/msi168, PubMed: 15901839
López, C., Saravia, C., Gomez, A., Hoebeke, J., & Patarroyo, M. A. (2010). Mechanisms of genetically-based resistance to malaria. Gene, 467(1–2), 1–12. doi:10.1016/j.gene.2010.07.008, PubMed: 20655368
Lithanatudom, P., Wipasa, J., Inti, P., Chawansuntati, K., Svasti, S., Fucharoen, S., . . . Kampuansai, J. (2016). Hemoglobin E prevalence among ethnic groups residing in malaria-endemic areas of Northern Thailand and its lack of association with Plasmodium falciparum invasion in World Health Organization. (2008). World malaria report. Retrieved from http://apps.who.int/malaria/wmr2008/malaria2008.pdf. Geneva, Switzerland: World Health Organization Press.
Kwiatkowski, D. P. (2005). How malaria has affected the human genome and what human genetics can teach us about malaria. American Journal of Human Genetics, 77(2), 171–192. doi:10.1086/432519, PubMed: 16001361
Playfair, J. H. L., & Bancroft, G. J. (2008). Infection and immunity (3rd ed). : ill. England Oxford ; New York Oxford University Press, xvi. ISBN: 9780199206735.
Reece, S. E., Prior, K. F., & Mideo, N. (2017). The life and times of parasites: Rhythms in strategies for within-host survival and between-host transmission. Journal of Biological Rhythms, 32(6), 516–533. doi:10.1177/0748730417718904, PubMed: 28845736
Kariuki, S. N., Marin-Menendez, A., Introini, V. et al. (2018). Red blood cell tension controls Plasmodium falciparum invasion and protects against severe malaria in the Dantu blood group. bioRxiv. https ://doi. doi:10.1101/475442
Garnham, P. C. C. (1966). Malaria parasites and other haemosporidia. Oxford, UK: Blackwell Scientific Publications.
Snow, R. W., Guerra, C. A., Noor, A. M., Myint, H. Y., & Hay, S. I. (2005). The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature, 434(7030), 214–217. doi:10.1038/nature03342, PubMed: 15759000
Cavalli-Sforza, L. L. et al. (1994). The history and geography of human genes. Princeton: Princeton University Press.
Rowe, A., Obeiro, J., Newbold, C. I., & Marsh, K. (1995). Plasmodium falciparum rosetting is associ-ated with malaria severity in Kenya. Infection and Immunity, 63(6), 2323–2326. doi:10.1128/IAI.63.6.2323-2326.1995, PubMed: 7768616
Rowe, J. A., Claessens, A., Corrigan, R. A., & Arman, M. (2009). Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: Molecular mechanisms and therapeutic implications. Expert Reviews in Molecular Medicine, 11, e16.doi:10.1017/S1462399409001082, PubMed: 19467172
Williams, T. N., Weatherall, D. J., & Newbold, C. I. (2002). The membrane char-acteristics of Plasmodium falciparum-infected and -uninfected heterozygous alpha(0)thalassaemic erythrocytes. British Journal of Haematology, 118(2), 663–670. doi:10.1046/j.1365-2141.2002.03610.x, PubMed: 12139762
Haldane, J. B. S. (1948). The rate of mutation of human genes. Hereditas, 35(S1)(Suppl. 1) [Suppl., 267–273], 267–273. doi:10.1111/j.1601-5223.1949.tb03339.x
Allison, A. C. (1954). Protection afforded by sickle-cell trait against subtertian malareal infection. British Medical Journal, 1(4857), 290–294. doi:10.1136/bmj.1.4857.290, PubMed: 13115700
Malaria Genomic Epidemiology Network, & Malaria Genomic Epidemiology Network. Reappraisal of known malaria resistance loci in a large multicenter study. (2014). Nature Genetics, 46(11), 1197–1204. doi:10.1038/ng.3107, PubMed: 25261933
Ndila, C. M., Uyoga, S., Macharia, A. W. et al. (2018). Human candidate gene poly¬morphisms and risk of severe malaria in children in Kilifi, Kenya: A case-control association study. Lancet Haematol. https ://doi. doi:10.1016/s2352-3026(18)30107-8
Pogo, A. O., & Chaudhuri, A. (1995). Duffy and receptors for P. vivax and chemotactic peptides. Transfusion Clinique et Biologique: Journal de la Societe Francaise de Transfusion Sanguine, 2(4), 269–276. doi:10.1016/s1246-7820(05)80093-x, PubMed: 8542025
Chitnis, C. E., & Miller, L. H. (1994). Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion. Journal of Experimental Medicine, 180(2), 497–506. doi:10.1084/jem.180.2.497, PubMed: 8046329
Faik, I., de Carvalho, E. G., & Kun, J. F. (2009). Parasite-host interaction in malaria: Genetic clues and copy number variation. Genome Medicine, 1(9), 82. doi:10.1186/gm82, PubMed: 19725943
Roberts, D. J., & Williams, T. N. (2003). Haemoglobinopathies and resistance to malaria. Redox Report: Communications in Free Radical Research, 8(5), 304–310. doi:10.1179/135100003225002998, PubMed: 14962371. -, PubMed. (2003). Haemoglobinopathies and resistance to malaria. Redox Report: Communications in Free Radical Research, 8(5), 304–310. doi:10.1179/135100003225002998
Beet, E. A. (1946). Sickle cell disease in the Balovale District of northern Rhodesia. East African Medical Journal, 23, 75–86. PubMed: 21027890
Schrier, S. L. (2002). Pathophysiology of thalassemia. Current Opinion in Hematology, 9(2), 123–126. doi:10.1097/00062752-200203000-00007, PubMed: 11844995
Carter, R., & Mendis, K. N. (2002). Evolutionary and historical aspects of the burden of malaria. Clinical Microbiology Reviews, 15(4), 564–594. doi:10.1128/cmr.15.4.564-594.2002, PubMed: 12364370
Genton, B., al-Yaman, F., Mgone, C. S., Alexander, N., Paniu, M. M., Alpers, M. P., & Mokela, D. (1995). Ovalocytosis and cerebral malaria. Nature, 378(6557), 564–565. doi:10.1038/378564a0vitro. PLOS ONE, 11(1), e0148079. doi:10.1371/journal.pone.0148079, PubMed: 26808200
Malaria Genomic Epidemiology Network. (2019). Insights into malaria susceptibility using genome-wide data on 17,000 individuals from Africa, Asia and Oceania. Nature Communications, 10(1), 5732. doi:10.1038/s41467-019-13480-z, PubMed: 31844061
Tiffert, T., Lew, V. L., Ginsburg, H., Krugliak, M., Croisille, L., & Mohandas, N. (2005). eet al. Blood, 105(12), 4853–4860. doi:10.1182/blood-2004-12-4948, PubMed: 15728121
Zimmerman, R. H., Lounibos, L. P., Nishimura, N., Galardo, A. K., Galardo, C. D., & Arruda, M. E. (2013). Nightly biting cycles of malaria vectors in a heterogeneous transmission area of eastern Amazonian Brazil. Malaria Journal, 12, 262. doi:10.1186/1475-2875-12-262, PubMed: 23890413
Zimmerman, P. A., Woolley, I., Masinde, G. L., Miller, S. M., McNamara, D. T., Hazlett, F., . . . Kazura, J. W. (1999). Emergence of FY*A(null) in a Plasmodium Vivaxendemic region of Papua New Guinea. Proceedings of the National Academy of Sciences of the United States of America, 96(24), 13973–13977. doi:10.1073/pnas.96.24.13973, PubMed: 10570183
Pogo, A. O., & Chaudhuri, A. (2000). The Duffy protein: A malarial and Chemokinereceptor. Seminars in Hematology, 37(2), 122–129. doi:10.1016/s0037-1963(00)90037-4, PubMed: 10791881
Murphy, P. M., Baggiolini, M., Charo, I. F., Hébert, C. A., Horuk, R., Matsushima, K., . . . Power, C. A. (2000). International Union of Pharmacology. XXII.nomenclature for chemokine receptors. Pharmacological Reviews, 52(1), 145–176. PubMed: 10699158
Weppelmann, T. A. A., Carter, T. E., Chen, Z., von Fricken, M. E., Victor, Y. S., Existe, A., & Okech, B. A. (2013). High frequency of the erythroid silent Duffy antigen genotype and lack of Plasmodium vivax infections in Haiti. Malaria Journal, 12, 30. doi:10.1186/1475-2875-12-30, PubMed: 23347639
Clark, T. G. G., Fry, A. E., Auburn, S., Campino, S., Diakite, M., Green, A., . . . Rockett, K. A. (2009). Allelic heterogeneity of G6PD deficiency in West Africa and severe malaria susceptibility. European Journal of Human Genetics, 17(8), 1080–1085. doi:10.1038/ejhg.2009.8, PubMed: 19223928
Shah, S. S. S., Rockett, K. A., Jallow, M., Sisay-Joof, F., Bojang, K. A., Pinder, M., . . . MalariaGEN Consortium. (2016). Heterogeneous alleles comprising G6PD deficiency trait in West Africa exert contrasting effects on two major clinical presentations of severe malaria. Malaria Journal, 15, 13. doi:10.1186/s12936-015-1045-0, PubMed: 26738565
Wassmer, S. C. C., & Carlton, J. M. (2016). Glycophorins, blood groups, and protection from severe malaria. Trends in Parasitology, 32(1), 5–7. doi:10.1016/j.pt.2015.11.006, PubMed: 26613665
Maier, A. G. G., Duraisingh, M. T., Reeder, J. C., Patel, S. S., Kazura, J. W., Zimmerman, P. A., & Cowman, A. F. (2003). Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human Npopulations. Nature Medicine, 9(1), 87–92. doi:10.1038/nm807, PubMed: 12469115
Louicharoen, C., Patin, E., Paul, R., Nuchprayoon, I., Witoonpanich, B., Peerapittayamongkol, C., . . . Sakuntabhai, A. (2009). Positively selected G6PD-Mahidol mutation reduces Plasmodium vivax density in Southeast Asians. Science, 326(5959), 1546–1549. doi:10.1126/science.1178849, PubMed: 20007901
Smith, C. M. M., Jerkovic, A., Puy, H., Winship, I., Deybach, J. C., Gouya, L., . . . Foote, S. J. (2015) Red cells from ferrochelatase-deficient erythropoietic protoporphyria patients are resistant to growth of malarial parasites. Blood, 125(3), 534–541. doi:10.1182/blood-2014-04-567149, PubMed: 25414439
Chilongola, J., Balthazary, S., Mpina, M., Mhando, M., & Mbugi, E. (2009). CD36 deficiency protects against malarial anemia in children by reducing Plasmodium falciparum-infected red blood cell adherence to vascular endothelium. Tropical Medicine and International Health, 14(7), 810–816. doi:10.1111/j.1365-3156.2009.02298.x, PubMed: 19413744
Ochola, L. B. B. et al. (2011). Specific receptor usage in Plasmodium falciparum cytoadherence is associated with disease outcome. PLOS ONE, 6(3), e14741. Published. doi:10.1371/journal.pone.0014741, PubMed: 21390226
Jha, P., Sinha, S., Kanchan, K., Qidwai, T., Narang, A., Singh, P. K., . . . Habib, S. (2012). Deletion of the APOBEC3B gene strongly impacts susceptibility to falciparum Malaria. Infection, Genetics and Evolution, 12(1), 142–148. doi:10.1016/j.meegid.2011.11.001, PubMed: 22108670
Holmberg, V., Onkamo, P., Lahtela, E., Lahermo, P., Bedu-Addo, G., Mockenhaupt, F. P., & Meri, S. (2012). Mutations of complement lectin pathway genes MBL2 and MASP2 associated with placental malaria. Malaria Journal, 11, 61. doi:10.1186/1475-2875-11-61, PubMed: 22380611
Fernandez-Reyes, D., Craig, A. G., Kyes, S. A., Peshu, N., Snow, R. W., Berendt, A. R., . . . Newbold, C. I. (1997). A high frequency African coding polymorphism in the N-terminal domain of ICAM-1 predisposing to cerebral malaria in Kenya. Human Molecular Genetics, 6(8), 1357–1360. doi:10.1093/hmg/6.8.1357, PubMed: 9259284
Coia, V., Jüliger, S., Mordmüller, B., Kreidenweis, A., Stroh, A. L., Ortega, C., . . . Kun, J. F. (2005). Analysis of polymorphic sites in the promoter of the nitric oxide synthase 2 gene. Biochemical and Biophysical Research Communications, 335(4), 1123–1131. doi:10.1016/j.bbrc.2005.07.178, PubMed: 16105645
Holmberg, V., Schuster, F., Dietz, E., Sagarriga Visconti, J. C., Anemana, S. D., Bienzle, U., & Mockenhaupt, F. P. (2008). Mannose-binding lectin variant associated with severe malaria in young African children. Microbes and Infection, 10(4), 342–348. doi:10.1016/j.micinf.2007.12.008, PubMed: 18396436
Meyer, C. G., May, J., Luty, A. J., Lell, B., & Kremsner, P. G. (2002). TNFalpha-308A associated with shorter intervals of Plasmodium falciparum reinfections. Tissue Antigens, 59(4), 287–292. doi:10.1034/j.1399-0039.2002.590406.x, PubMed: 12135427
Von Kalckreuth, V., Evans, J. A., Timmann, C., Kuhn, D., Agbenyega, T., Horstmann, R. D., & May, J. (2006). Promoter polymorphism of the anion-exchange protein 1 associated with severe malarial anemia and fatality. Journal of Infectious Diseases, 194(7), 949–957. doi:10.1086/507430, PubMed: 16960783
Atkinson, A., Garnier, S., Afridi, S., Fumoux, F., & Rihet, P. (2012). eet al. Malaria Journal, 11, 108. doi:10.1186/1475-2875-11-108, PubMed: 22475533
Kanneganti, M., Kamba, A., & Mizoguchi, E. (2012). Role of chitotriosidase (chitinase 1) under normal and disease conditions. Journal of Epithelial Biology and Pharmacology, 5, 1–9. doi:10.2174/1875044301205010001, PubMed: 23439988
Ayi, K., Turrini, F., Piga, A., & Arese, P. (2004). eet al. Blood, 104(10), 3364–3371. doi:10.1182/blood-2003-11-3820, PubMed: 15280204
Mockenhaupt, F. P. P., Ehrhardt, S., Gellert, S., Otchwemah, R. N., Dietz, E., Anemana, S. D., & Bienzle, U. (2004). Alpha(+)-thalassemia protects African children from severe malaria. Blood, 104(7), 2003–2006. doi:10.1182/blood-2003-11-4090, PubMed: 15198952
Min-Oo, G., Fortin, A., Tam, M. F., Nantel, A., Stevenson, M. M., & Gros, P. (2003). Pyruvate kinase deficiency in mice protects against malaria. Nature Genetics, 35(4), 357–362. doi:10.1038/ng1260, PubMed: 14595440
Durand, P. M. M., & Coetzer, T. L. (2008). Pyruvate kinase deficiency protects against malaria in humans. Haematologica, 93(6), 939–940. doi:10.3324/haematol.12450, PubMed: 18460648
Van Bruggen, R., Gualtieri, C., Iliescu, A., Louicharoen Cheepsunthorn, C., Mungkalasut, P., Trape, J. F., . . . Gros, P. (2015). Modulation of malaria phenotypes by pyruvate kinase (PKLR) variants in a Thai population. PLOS ONE, 10(12), e0144555. doi:10.1371/journal.pone.0144555, PubMed: 26658699
Greth, A., Lampkin, S., Mayura-Guru, P., Rodda, F., Drysdale, K., Roberts-Thomson, M., . . . Burgio, G. (2012). A Novel ENU-Mutation in ankyrin-1 Disrupts Malaria Parasite Maturation in red blood cells of Mice. PLOS ONE, 7(6), e38999. doi:10.1371/journal.pone.0038999, PubMed: 22723917
Migot-Nabias, F., Mombo, L. E., Luty, A. J., Dubois, B., Nabias, R., Bisseye, C., . . . Deloron, P. (2000). Human genetic factors related to susceptibility to mild malaria in Gabon. Genes and Immunity, 1(7), 435–441. doi:10.1038/sj.gene.6363703, PubMed: 11196674
Dhangadamajhi, G., Mohapatra, B. N., Kar, S. K., & Ranjit, M. (2009). Endothelial nitric oxide synthase gene polymorphisms and Plasmodium falciparum infection in Indian adults. Infection and Immunity, 77(7), 2943–2947. doi:10.1128/IAI.00083-09, PubMed: 19364839
Chumanov, E. S., Heiderscheit, B. C., & Thelen, D. G. (2011). Hamstring musculotendon dynamics during stance and swing phases of high-speed running. Medicine and Science in Sports and Exercise, 43(3), 525–532. doi:10.1249/MSS.0b013e3181f23fe8, PubMed: 20689454
Cooling, L. (2015). Blood groups in infection and host susceptibility. Clinical Microbiology Reviews, 28(3), 801–870. doi:10.1128/CMR.00109-14, PubMed: 26085552
Lucet, I. S., Tobin, A., Drewry, D., Wilks, A. F., & Doerig, C. (2012). Plasmodium kinases as targets for new-generation antimalarials. Future Medicinal Chemistry, 4(18), 2295–2310. doi:10.4155/fmc.12.183, PubMed: 23234552
Reimer, L. J., Thomsen, E. K., Koimbu, G., Keven, J. B., Mueller, I., Siba, P. M., . . . Zimmerman, P. A. (2016). Malaria transmission dynamics surrounding the first nationwide long-lasting insecticidal net distribution in Papua New Guinea. Malaria Journal, 15, 25. doi:10.1186/s12936-015-1067-7, PubMed: 26753618
Alout, H., Ndam, N. T., Sandeu, M. M., Djégbe, I., Chandre, F., Dabiré, R. K., . . . Cohuet, A. (2013). Insecticide Resistancealleles Affect Vector Competence of Anopheles gambiae s.s. PLOS ONE, 8(5), e63849. doi:10.1371/journal.pone.0063849, PubMed: 23704944
Ndiath, M. O., Cailleau, A., Diedhiou, S. M., Gaye, A., Boudin, C., Richard, V., & Trape, J. F. (2014). Effects of the Kdr resistance mutation on the susceptibility of wild Anopheles gambiae populations to Plasmodium falciparum: A hindrance for Vector control. Malaria Journal, 13, 340. doi:10.1186/1475-2875-13-340, PubMed: 25176292
Silva, A. P., Santos, J. M., & Martins, A. J. (2014). Mutations in the voltage-gated sodium channel gene of anophelines and their association with resistance to pyrethroids — A review. Parasites and Vectors, 7, 450. doi:10.1186/1756-3305-7-450, PubMed: 25292318
Riveron, J. M. M., Chiumia, M., Menze, B. D., Barnes, K. G., Irving, H., Ibrahim, S. S., . . . Wondji, C. S. (2015). Rise of multiple insecticide resistance in Anopheles Funestus in Malawi: A major concern for malaria Vector control. Malaria Journal, 14, 344. doi:10.1186/s12936-015-0877-y, PubMed: 26370361
Ndiath, M. O., Cailleau, A., Orlandi-Pradines, E., Bessell, P., Pagès, F., Trape, J. F., & Rogier, C., Orlandi-Pradines Eeet al. (2015). Emerging Knock-down Resistance in Anopheles Arabiensispopulations of Dakar, Senegal: First Evidence of a High Prevalence ofkdr-e Mutation in West African Urban Area. Malaria Journal, 14, 364. doi:10.1186/s12936-015-0898-6, PubMed: 26395241
Trape, J. F., Pison, G., Preziosi, M. P., Enel, C., Desgrées du Loû, A., Delaunay, V., . . . Simondon, F. (1998). Impact of chloroquine resistance on malaria mortality. Comptes Rendus de l’Academie des Sciences. Serie III, Sciences de la Vie, 321(8), 689–697. doi:10.1016/s0764-4469(98)80009-7, PubMed: 9769862
Marwa, K. J. J., Schmidt, T., Sjögren, M., Minzi, O. M., Kamugisha, E., & Swedberg, G. (2014). Cytochrome P450 single nucleotide polymorphisms in an indigenous Tanzanian population: A concern about the metabolism of artemisinin-based combinations. Malaria Journal, 13, 420. doi:10.1186/1475-2875-13-420, PubMed: 25363545
Ali, A. A. A., Elhassan, E. M., Magzoub, M. M., Elbashir, M. I., & Adam, I. (2011). Hypoglycaemia and severe Plasmodium falciparum malaria among pregnant Sudanese women in an area characterized by unstable malaria transmission. Parasites and Vectors, 4(1), 88. doi:10.1186/1756-3305-4-88, PubMed: 21605445
Vincent, C., & N’Guessan, R. (Eds.). (2013). Mechanisms, impact and management of insecticide resistance in malaria vectors: A P Ragmatic. IntechOpen.
Menze, B. D., Riveron, J. M., Ibrahim, S. S., Irving, H., Antonio-Nkondjio, C., Awono-Ambene, P. H., & Wondji, C. S. (2016). Multiple insecticide resistance in the malaria Vector Anopheles Funestus from Northern Cameroon is mediated by metabolic resistance alongside potential target site insensitivity mutations. PLOS ONE, 11(10, October 10), e0163261. doi:10.1371/journal.pone.0163261, PubMed: 27723825
Ondeto, B. M., Nyundo, C., Kamau, L., Muriu, S. M., Mwangangi, J. M., Njagi, K., . . . Mbogo, C. M. (2017). Current status of insecticide resistance among malaria vectors in Kenya. Parasites and Vectors, 10(1), 429. doi:10.1186/s13071-017-2361-8, PubMed: 28927428
Beale, G. H. (1980). The genetics of drug resistance in malaria parasites. Bulletin of the World Health Organization, 58(5), 799–804. PubMed: 7028302
Kristian, H., & Pramila Vivek, H. V. H. The behavioural and social aspects of malaria and its control an introduction and annotated bibliography 2003UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) UNDP/World Bank/WHO.
Lacroix, R., Mukabana, W. R., Gouagna, L. C., & Koella, J. C., louis Clement Gouagna, and Jacob C. (2005). Malaria infection increases attractiveness of humans to mosquitoes. PLOS Biology, 3(9), e298. doi:10.1371/journal.pbio.0030298
Knowles, S. C., & Sheldon, B. C. (2008). Evolutionary biology: Parasite, know thyself. Current Biology, 18(15), R655–R657. doi:10.1016/j.cub.2008.06.032, PubMed: 18682205
Schneider, K. A., & Escalante, A. A. (2013). Fitness components and natural selection: Why are there different patterns on the emergence of drug resistance in Plasmodium falciparum and Plasmodium vivax? Malaria Journal, 12, 15. doi:10.1186/1475-2875-12-15, PubMed: 23305428
Mandal, F. B. (2015). Textbook of animal behaviour. PHI Learning Pvt, Ltd.
Lambrechts, L., Halbert, J., Durand, P., Gouagna, L. C., & Koella, J. C. (Hosts). (2005). Host genotype by parasite genotype interactions underlying the resistance of anopheline mosquitoes to Plasmodium falciparum. Malaria Journal, 4, 3. doi:10.1186/1475-2875-4-3
Haldane, J. B. S. (1949). Disease and evolution. Ricerca Scientifica Suppl., 19, 3–10 Hamblin MT.
Yuthavong, Y., & Wilairat, P. (1993). Protection against malaria by thalassaemia and haemoglobin variants. Parasitology Today, 9(7), 241–245. doi:10.1016/0169-4758(93)90065-n, PubMed: 15463767
Hill, A. V., Allsopp, C. E., Kwiatkowski, D., Anstey, N. M., Twumasi, P., Rowe, P. A., . . . Greenwood, B. M. (1991). Common West African HLA antigens are associated with protection from severe malaria. Nature, 352(6336), 595–600. doi:10.1038/352595a0, PubMed: 1865923
Lelliott, P. M. M., McMorran, B. J., Foote, S. J., & Burgio, G. (2015). The influence of host genetics on erythrocytes and malaria infection: Is there therapeutic potential? Malaria Journal, 14, 289. doi:10.1186/s12936-015-0809-x, PubMed: 26215182
Howes, R. E. E. et al. (2016). Contemporary epidemiological overview of malaria in Madagascar: Operational utility of reported routine case data for malaria control planning. Malaria Journal, 15(1), 502. doi:10.1186/s12936-016-1556-3http://dx.doi.org/10.5772/56117. PubMed: 27756389
Leung, J. M. M., Fishbane, N., Jones, M., Morin, A., Xu, S., Liu, J. C., . . . Man, S. F. (2017). Longitudinal study of surrogate aging measures during human immunodeficiency virus seroconversion. Aging, 9(3), 687–705. [PMC Free article]. doi:10.18632/aging.101184, PubMed: 28237978
- Abstract Viewed: 115 times