اثر بیتمرینی پس از یک دوره تمرین مقاومتی بر تحریکیپذیری مسیر قشری–نخاعی عضلات بازو
مجله سلامت و ورزش: رویکردهای نوین (سورن),
دوره 2 شماره 3 (1400),
21 December 2021
,
صفحه 37-45
https://doi.org/10.22037/soren.v2i3.36984
چکیده
سابقه و هدف: با توجه به نقش سازگاریهای عصبی در تغییرات قدرت به دنبال بیتمرینی، هدف از تحقیق حاضر بررسی تحریکیپذیری مسیر قشری- نخاعی دو عضله آگونیست (دوسر بازویی) و آنتاگونیست (سه سر بازویی) در حرکت جلو بازو به دنبال 4 هفته بیتمرینی پس از یک دوره تمرین مقاومتی با استفاده از متغیرهای دستگاه TMS بود.
روش کار: 12 آزمودنی سالم تمریننکرده (10 نفر گروه تمرین و 2 نفر گروه پایلوت) با میانگین سنی 2.04±28.00 سال و وزن 8.52±70.91 کیلوگرم بهصورت داوطلبانه در این تحقیق شرکت کردند. در هفته صفر (پیشآزمون)، هفته چهارم تمرین، هفته دوم بیتمرینی و هفته چهارم بیتمرینی اندازهگیری دور بازو، یک تکرار بیشینه (1-RM) و همفعالی انجام گرفت و تحریکپذیری قشری- نخاعی (MEP) با استفاده از دستگاههای TMS اندازهگیری شد.
یافتهها: نتایج تحقیق حاضر نشان داد که قدرت در هفته چهارم بیتمرینی سبب کاهش معنادار (10 درصد) در قدرت عضله آگونیست شد. عضله آنتاگونیست نیز همانند عضله آگونیست به بیتمرینی پاسخ داد (هفته دوم 5/2 درصد و هفته چهارم 8 درصد). سطح زیر منحنی MEP در عضله دوسربازویی و سه سر بازویی کاهش معنادار بعد از 4 هفته بیتمرین نشان داد (P=0.003). نتایج رگرسیون نشان داد که تغییرات قدرت با عوامل تحریکی رابطه خطی در دو عضله نداشت.
نتیجهگیری: به طور کلی نتایج تحقیق حاضر نشان داد که تغییرات رخ داده در ناحیه قشری و مسیر قشری- نخاعی محدود به عضله تمرینکرده نیست و بیتمرینی احتمالا سبب کاهش تحریکپذیری مسیر قشری- نخاعی میشود، ولی بین دو عضله در کوتاهمدت تفاوتی مشاهده نشد.
- آگونیست
- آنتاگونیست
- بیتمرینی
- سازگاریهای عصبی
- قدرت ارادی
- همفعالی
ارجاع به مقاله
مراجع
Tallent, J., et al., Enhanced corticospinal excitability and volitional drive in response to shortening and lengthening strength training and changes following detraining. Frontiers in physiology, 2017. 8: p. 57.
Bosquet, L., et al., Effect of training cessation on muscular performance: A meta‐analysis. Scandinavian journal of medicine & science in sports, 2013. 23(3): p. e140-e149.
Andersen, L.L., et al., Neuromuscular adaptations to detraining following resistance training in previously untrained subjects. European journal of applied physiology, 2005. 93(5): p. 511-518.
Narici, M.V., et al., Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. European journal of applied physiology and occupational physiology, 1989. 59(4): p. 310-319.
Popadic Gacesa, J.Z., K.B. Dusko, and N.G. Grujic, Triceps brachii strength and regional body composition changes after detraining quantified by MRI. Journal of magnetic resonance imaging, 2011. 33(5): p. 1114-1120.
Häkkinen, K. and P.V. Komi, Electromyographic changes during strength training and detraining. Medicine and science in sports and exercise, 1983. 15(6): p. 455-460.
Häkkinen, K., M. Alen, and P. Komi, Changes in isometric force‐and relaxation‐time, electromyographic and muscle fibre characteristics of human skeletal muscle during strength training and detraining. Acta physiologica scandinavica, 1985. 125(4): p. 573-585.
Clark, B.C., et al., Adaptations in human neuromuscular function following prolonged unweighting: II. Neurological properties and motor imagery efficacy. Journal of applied physiology, 2006. 101(1): p. 264-272.
Siddique, U., et al., Determining the sites of neural adaptations to resistance training: a systematic review and meta-analysis. Sports Medicine, 2020: p. 1-22.
Galhardoni, R., et al., Repetitive transcranial magnetic stimulation in chronic pain: a review of the literature. Archives of physical medicine and rehabilitation, 2015. 96(4): p. S156-S172.
Balderston, N.L., et al., Low-frequency parietal repetitive transcranial magnetic stimulation reduces fear and anxiety. Translational Psychiatry, 2020. 10(1): p. 1-10.
Kavehee A, G.R., Rajabi H, Rezasoltani Z, Azema K, Amiri E. . The Effect of Upper Limb Exhaustive Activity on Corticospinal Excitability and Motoneuron Responsiveness of Lower Limb. Sport Physiology. Spring 2019; 11(41): 17-30. (In Persian).
Kidgell, D.J., et al., Corticospinal responses following strength training: a systematic review and meta‐analysis. European Journal of Neuroscience, 2017. 46(11): p. 2648-2661.
Siddique, U., et al., Determining the sites of neural adaptations to resistance training: a systematic review and meta-analysis. Sports Medicine, 2019: p. 1-25.
Roberts, D.R., et al., Lower limb immobilization is associated with increased corticospinal excitability. Experimental brain research, 2007. 181(2): p. 213-220.
Jensen, J.L., P.C. Marstrand, and J.B. Nielsen, Motor skill training and strength training are associated with different plastic changes in the central nervous system. Journal of applied physiology, 2005. 99(4): p. 1558-1568.
Zanette, G., et al., Reversible changes of motor cortical outputs following immobilization of the upper limb. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control, 1997. 105(4): p. 269-279.
Kesar, T.M., et al., Agonist-Antagonist Coactivation Enhances Corticomotor Excitability of Ankle Muscles. Neural Plasticity, 2019. 2019.
Mason, J., et al., Modulation of intracortical inhibition and excitation in agonist and antagonist muscles following acute strength training. European journal of applied physiology, 2019. 119(10): p. 2185-2199.
Latella, C., D.J. Kidgell, and A.J. Pearce, Reduction in corticospinal inhibition in the trained and untrained limb following unilateral leg strength training. European journal of applied physiology, 2012. 112(8): p. 3097-3107.
Mason, J., et al., Adaptations in corticospinal excitability and inhibition are not spatially confined to the agonist muscle following strength training. European Journal of Applied Physiology, 2017. 117(7): p. 1359-1371.
Gorassini, M., et al., Activity of hindlimb motor units during locomotion in the conscious rat. Journal of neurophysiology, 2000. 83(4): p. 2002-2011.
Roman-Liu, D. and P. Bartuzi, Influence of type of MVC test on electromyography measures of biceps brachii and triceps brachii. International journal of occupational safety and ergonomics, 2018. 24(2): p. 200-206.
Jaberzadeh, S., D. Yeo, and M. Zoghi, The effect of altering knee position and squat depth on VMO: VL EMG ratio during squat exercises. Physiotherapy Research International, 2016. 21(3): p. 164-173.
Brzycki, M., A practical approach to strength training. 1989: Masters Press Grand Rapids, MI.
Stasinaki, A.-N., et al., Triceps brachii muscle strength and architectural adaptations with resistance training exercises at short or long fascicle length. Journal of Functional Morphology and Kinesiology, 2018. 3(2): p. 28.
Jeyakumar, A., P. Ghugre, and S. Gadhave, Mid-upper-arm circumference (MUAC) as a simple measure to assess the nutritional status of adolescent girls as compared with BMI. ICAN: Infant, Child, & Adolescent Nutrition, 2013. 5(1): p. 22-25.
Fisher, B.E., et al., Evidence of altered corticomotor excitability following targeted activation of gluteus maximus training in healthy individuals. Neuroreport, 2016. 27(6): p. 415-421.
Mason, J., et al., Tracking the corticospinal responses to strength training. European Journal of Applied Physiology, 2020: p. 1-16.
Lundbye-Jensen, J. and J.B. Nielsen, Central nervous adaptations following 1 wk of wrist and hand immobilization. Journal of applied physiology, 2008. 105(1): p. 139-151.
Narici, M., et al., Impact of sedentarism due to the COVID-19 home confinement on neuromuscular, cardiovascular and metabolic health: Physiological and pathophysiological implications and recommendations for physical and nutritional countermeasures. European journal of sport science, 2021. 21(4): p. 614-635.
Zehr, P.E., Considerations for use of the Hoffmann reflex in exercise studies. European journal of applied physiology, 2002. 86(6): p. 455-468.
Chi, M., et al., Effects of detraining on enzymes of energy metabolism in individual human muscle fibers. American Journal of Physiology-Cell Physiology, 1983. 244(3): p. C276-C287.
Pedlar, C.R., et al., Cardiovascular response to prescribed detraining among recreational athletes. Journal of Applied Physiology, 2018. 124(4): p. 813-820.
Correa, C.S., et al., Effects of strength training and detraining on knee extensor strength, muscle volume and muscle quality in elderly women. Age, 2013. 35(5): p. 1899-1904.
Leukel, C., et al., Changes in corticospinal transmission following 8 weeks of ankle joint immobilization. Clinical Neurophysiology, 2015. 126(1): p. 131-139.
Gondin, J., et al., Neural and muscular changes to detraining after electrostimulation training. European journal of applied physiology, 2006. 97(2): p. 165-173.
Häkkinen, K., et al., Neuromuscular adaptation during prolonged strength training, detraining and re-strength-training in middle-aged and elderly people. European journal of applied physiology, 2000. 83(1): p. 51-62.
Rutherford, O. and D. Jones, The role of learning and coordination in strength training. European journal of applied physiology and occupational physiology, 1986. 55(1): p. 100-105.
- چکیده مشاهده شده: 60 بار
- pdf دانلود شده: 42 بار